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I. Phys.: Condens. Matter 5 (1993) 3221-3240. Printed in the UK 

Ab initio molecular dynamics with an orbital-free density 
functional 

M F‘earson, E Smargiassi and P A Madden 
Physical Chemislry Laborato~. Oxford University. South Park Road, Oxford 0x1 3QZ UK 

Received 29 January 1993. in final fom 16 March 1993 

Abstract A scheme for ob initio simulations of extended systems, which involves the use 
of the elecmn density as the basic variable, is discussed The form of the kinetic energy 
functional is chosen U, incorporate several exact limits (uniform system linear response and 
rapidly varying density) while the r e ~ t  of the energy functional is exactly the same as in a 
K o h S h a m  density functional calculation with the local density approximation. We show that 
for sodium the present scheme yields highquality results in a fraction of the time required with 
an orbital-based functional. The elecmnic part of the algorithm scales linearly with system 
size. An analysis of the stability of the method is made, and leads U, criteria for selecting the 
non-physical parameiers in the calculation so as to maximize the computational efficiency. 

1. Introduction 

The ab initio molecular dynamics technique [I], introduced by Car and Paninello (CP), 
enables the simulation of multinuclear systems on an adiabatic electronic energy surface 
calculated ‘on the fly’. The method thereby avoids the introduction of an effective potential 
energy, expressed as a function of the internuclear coordinates, and thus greatly broadens 
the range of physical systems accessible to simulation methods. The CP formalism is also 
at the heart of efficient methods for performing total energy minimizations on condensed 
matter systems [Z]. 

Most successful applications of the method have made use of a density functional 
prescription for calculating the electronic energy. The use of the electron density p ( r )  as 
the basic variable in the description of the electronic state is sanctioned by the Hohenberg- 
Kohn theorem [31. In practical calculations [4-6] the Kohn-Sham (KS) [7] realization of 
the formalism is used in which the energy functional, E [ p ( r ) ]  is expressed as the sum of 
kinetic, Coulomb (Hartree), exchange-correlation and extemal functionals: 

E[pl E K E b I  f EH&]+ Ex&] + E e x t b l .  (1.1) 
The kinetic energy functional is the kinetic energy of a non-interacting electron gas with the 
same density as that of the interacting system of interest. In order to represent this kinetic 
energy functional for N electrons, a set of N orthonormal orbitals are inaoduced such that 

I, 

and 

(1.3) 
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With this form chosen for Em. very useful expressions for E, have been determined 141 
which are the basis for a successful description of the electronic ground state of condensed 
[S,9] and molecular [IO, 111 systems. Furthermore, there has been much work done to 
obtain accurate and transferable pseudopotentials [12,13] (Vel) to describe the interaction 
of the ion cores with the valence electrons in the KS scheme: these appear in E,&]: 

where the sum runs over ions. 
In the CP formalism, use of the KS representation leads to a set of N functional differential 

equations that describe the time evolution of the electronic state [14,15] as the ions move. 
In practice, the orbitals are expanded in a set of M basis functions, usually plane waves, 
so that a set of N x M time differential equations result The right-hand sides of these 
equations contain the effect of the Hamiltonian on the orbitals and a set of constraint forces, 
which serve to keep the occupied orbitals orthonormal. With plane waves as basis functions, 
evaluation of the Hamiltonian can be made very efficient. In favourable circumstances, the 
computational cost of evaluating this term scales as N M In M. Since M may be a large 
number = 104 this factor normally determines the expense of the calculation. For a given 
physical system both N and M increase linearly with the volume (Q) of the system, if the 
same planewave cutoff g, is maintained. Consequently, the evaluation of the Hamiltonian 
scales as S-2' In S-2. However, for very large calculations, the most time-consuming part 
becomes the imposition of the orthonormality constraints, which scale with a'. In a 
straightforward implementation of the CP scheme, it is then the scaling properties of the 
orbital orthogonalization that limits the size of system which may be tackled. Very recently, 
there have been auempts to devise modified algorithms with better scaling propelties, within 
the KohnSham representation [16,17]. 

When viewed from a distance the finding that this orthogonality problem limits the 
applicability of the CP method seems bizarre. The orbitals were only introduced to represent 
the kinetic energy of non-interacting electrons; this would seem to be a rrivial part of the 
totality of the electronic energy compared to the complexities that are contained within Exc! 
The most attractive way out of the dilemma appears to be to invoke the full power of the 
Hohenberg-Kohn theorem and find a sufficiently good representation of the non-interacting 
kinetic energy EKE,  which is a functional only of p ( r )  itself. We would then combine 
this with the Coulomb. exchange-correlation and external energy functionals that have been 
developed within the KohnSham realization and whose success is now well established. 

Given such a functional we could construct a variant of the original CP scheme. 
Consider, for example, a system of N electrons and N I  ions in a cubic cell of length 
L. The electron density is periodic and may be expanded as a Fourier series 

p ( r )  = Cpseivr (1.6) 
g 

where g = (2n/L)[1,  m, n] ,  1, m, n are integers such that g < gc. By following the normal 
routes (as in 1151, for example) to the derivation of the CP equations, with these Fourier 
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coemcients of the electron density, pg. as the additional dynamical variables that prescribe 
the electronic state, we readily obtain the coupled equations for the ion position (&) and 
coefficient dynamics: 

where p, is a ‘fake mass’ or inertia parameter. and 
MI&, = -VaE - Val/n (Y = 1, NI (1.8) 

where 1/11 is the potential energy of the direct ion-ion interaction. These equations differ 
from the normal CP equations in two ways. There are U equations of type (1.7) rather than 
the N x M orbital coefficient equations found with the KS functional. we would therefore 
expect the cost of evaluating the Hamiltonian to be a factor N smaller than in this case. 
Secondly, (1.7) contains no constraint terms; the only constraint to be implemented is simply 
that the total number of electrons is conselved: 

pg=o = N/Q (1.9) 
(which is imposed on all the Fourier space equations below). From these considerations, 
we anticipate an algorithm that scales as 51 In 51, i.e. roughly linearly with system size. In 
addition the memory requirements will scale linearly with 51 rather than quadratically, as 
in the orbital-based calculation. 

The objective of this paper is to show that these possibilities are largely realised, at 
least for simple metals, and that there are further practical advantages, not anticipated in 
the discussion above, which make such a scheme even more attractive than outlined for 
metallic systems. 

Firstly, we show that a kinetic energy functional can be constructed which gives results 
for the properties of simple metals that are as good as those obtained from the KS formalism. 
The energy functional is constructed by following the suggestions of Pemt [U], but a 
closely related functional has recently been introduced by Wang and Teter 1191. who also 
demonstrate the possibilities for further systematic improvements, which will extend the 
range of physical systems that can be represented with an orbital-free density functional. 
A point to note here is that, to obtain accurate KS results for metals, it is often necessary 
to employ Brillouin-zone sampling (see [IS] for a discussion): this is necessary to get a 
good representation of the wavefunction-the density is unaffected. In effect, then, smaller 
basis sets are required in orbital-free DFT calculations-a factor that becomes particularly 
important in disordered systems or dynamics runs, when symmetry cannot be invoked to 
reduce the number of sampling points. 

Secondly, we show that the coupled equations above do update the adiabatic ground 
electronic state in the desired manner as the ions move. In fact, as we will demonstrate, 
for metals the adiabatic update takes place far more readily (i.e. without re-quenching or 
thermostatting [20,21]) in the true DFC scheme than within the KS description. Furthermore, 
it becomes possible to ‘condition’ the coefficient equations (1.7). by a predetermined choice 
of the fig, so that an optimum timestep for dynamics may he chosen approaching the natural 
MD timestep for the ionic system. Consequently, the real time evolution is extremely rapid. 

Although the scaling argument, which was outlined above, is borne out by the results 
we find, in practice, that it is incomplete. The electron-ion interaction, which is a minor 
contributor to the computational cost of a Ks-based calculation (and therefore neglected 
in the argument presented), becomes the slowest part of the true DFT calculation for large 
system sizes. Although this, at present, seems to prevent us (or anyone) reaching the Holy 
Grail of a linear scaling algorithm, it does emphasize how rapidly the rest of the calculation 
can be made to proceed. 
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2. The choice of kinetic energy functional 

There have been previous formulations [22.23] of cp algorithms based upon the Thomas- 
Fermi kinetic energy functional [MI 

E T F [ P ~ =  %( 3 7 ~ ~ ) ~ / ’ ~ d r  p ( ~ ) ~ / ~ .  (2. I ) 

By construction, this gives the exact energy of a uniform non-interacting electron gas. It is 
also known to become exact for atoms in the limit of infinite nuclear charge and also in the 
limit of high electron density. Because of the latter property, the Thomas-Fermi functional 
becomes useful in the description of some plasmas [22]. However, from a consideration 
of the effective response properties of the electronic system described by this functional, it 
can readily be seen that we must improve on Em[p] to get an adequate description of the 
effective ion-ion interactions in metals. 

2.1. Linear response and the kinetic energy functional 

In the conventional picture, the direct ion-ion interactions are screened by the perturbations 
in the electron gas induced by the electron-ion interactions. If these interactions are weak, 
the induced charge density is calculated from the linear response of the electron gas to the 
electron-ion potential (Vcxl) [XI. In Fourier space 

Pg = F(g)V,xt@) (2.2) 

where F(g) is the external response function (or susceptibility). Alternatively, the electron 
gas may be regarded as responding to the total potential, consisting of V,,, plus the potential 
due to the charge density induced by the extemal field. In this case 

P, = x(n)(vext@) + vi&?)) (2.3) 

where x ( g )  is called the screened response function (or screened susceptibility). The 
susceptibilities associated with a given choice of kinetic energy functional are readily 
obtained, The equilibrium-induced density for a given extemal disiurbance js obtained 
by minimizing the energy functional with respect to variations in the charge density; for the 
TF functional 

where 

(2.4) 

For small perturbations about a uniform density we may linearize the kinetic energy gradient, 
giving 
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where kp is the Fermi wavevector for the uniform system (kp = ( 3 ~ r ~ p o ) ” ~ ) .  In reciprocal 
space, this is 

(2.7) 

Comparing with (2.3) we see that the screened susceptibility implicit in the choice of 
Thomas-Fermi functional is a constant: 

In the simplest case, where the exchangecorrelation contributions are neglected (i.e. a 
‘Hartree’ gas), this response function leads to the prediction that the screened potential due 
to a point-charge ion is of Yukawa form [25,26]. 

However, for this system the exact screened-response function is the Lindhard function 
1271: 

where q = g/2kF. The Lindhard and Thomas-Fermi response functions, ,yo and XTF. are. 
equal in the limit of low q. For larger q. however, ,yo is considerably less negative than XTF, 
i.e. Thomas-Fermi theory overestimates the response. At q = 1 (g = 2 k ~ )  the Lindhard 
function has a logarithmic singularity in the derivative (which is due to the discontinuity 
in the occupation of the electron levels at the Fermi surface). The result of this is that 
the screened potential of a point charge has considerably more structure than the simple 
Yukawa potential predicted by TF theory. In particular, it can be shown (e.g. [25,26]) that 
at large distances, the screened potential does not simply decay exponentially, as with the 
Yukawa potential, but instead has a slowly decaying oscillatory term: 

(210) 

These so-called Friedel oscillarions in Vwr(r) are. an important aspect of the effective 
interionic interactions in metals [26,28]. 

Hohenberg and Kohn (HK) [3,29] showed how to construct a kinetic energy functional 
for non-interacting fermions that yields the correct linear response behaviour. For a uniform 
non-interacting electron gas the kinetic energy is given by the Thomas-Fermi result (2.1); 
for small departures from uniformity, the energy may be expanded in the Fourier coefficients 
of the density fluctuationst 

1 Vdr) - - cos2kpr. 
r3 

(2.1 1) 

where the absence of a linear term follows from the equilibrium condition. For non- 
interacting elecmns the total energy is 

Eb1 = EKE[PI + &&I 
(2.12) 

t The apparently mysterious appearance of the S2 factor here is related U) the fact that we sum over points g in 
reciprocal space and integrate over real space r. 
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and so at equilibrium 

(2.13) 

Hence, by choosing K to be minus the reciprocal of the exact external susceptibility of the 
non-interacting electron gas, the correct response properties are guaranteed for this case. 
However, the susceptibility for this case is also the Lindhard function xo(g) [271 and so 

SE 
Pg K ( R )  + Vert@) = 0. sp,= 

If we now examine the consequences of this choice for the Hartree gas we find 

(2.14) 

(2.15) 

i.e. that the predicted screened response function for this case is the Lindhard function- 
which is the correct result 1271. Using the Hohenberg-Kohn functional for the kinetic energy 
functional of the non-interacting electron gas will therefore give the Friedel oscillations in 
the effective interactions between ions. 

2.2. Results with the Hohenherg-Kohn functional 

As stated in the introduction, the objective is to combine the kinetic energy functional with 
forms for exchange-correlation and external functionals, which have been determined withiin 
the KohnSham formulation. With the HK kinetic energy functional, (1.7) becomes 

(2.16) 

The second term on the right-hand side is the Coulomb eartree) potential: the third is the 
external potential 

(2.17) 

where the sum runs over ions and V,, is the pseudopotential. The final term is the exchange- 
correlation potential, we used the Ceperley-Alder [30] function (as parametrized in [31]) 
for Ext. The term 6 E,/Gp(r) is evaluated from the density in real space and then Fourier 
transformed. Equation (2.16) is therefore readily evaluated at the cost of two fast Fourier 
transformations. 

The first thing we sought to establish was whether the linear response characteristics 
of this total functional agreed with the known response characteristics of the interacting 
electron gas including exchange and correlation. In the construction of effective interion 
potentials an extemal response function of the form 

F ( g )  = xo(g)/[I + (4Jr/g2)(G(g) - I)xo(g)l (2.18) 

is used, where G(g) is a 'local field factor', which accounts for the exchange and correlation 
effects. (G(g) = 0 gives the correct relationship between external and screened response 
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function for the Hartree gas [27]). An accurate local field factor is believed to be that 
of Vashista and Singwi [32], and this is widely used 1281. We can compute the external 
response function for the chosen functional by solving (216) with pg = 0 in the presence 
of an arbitrary weak form for Vex,@), and comparing pg/Ve, ,@) with values of F(g)  
from (2.18). The result is shown in figure 1; the two curves are in excellent agreement 
and appreciably different to the external response function for the Hartree gas. We may 
therefore be confident that the linear response properties of the electronic system represented 
by our chosen density functional are as good as those used as an input to effective potential 
calculations. 

Next, we attempted to use the HK kinetic energy functional in calculations on sodium. 
For the external energy functional we use the norm-conserving local pseudopotential of 
Topp and Hopfield [33], which was determined within the KohnSham representation and 
is known to give a good account of the properties of sodium [34]. The ions were placed 
in their crystalline lattice positions and we attempted to minimize the energy functional 
by varying the pg from a random initial starting point. These calculations rapidly became 
unstabl-this could be traced to the fact that the electron density was becoming negative at 
points in real space at which the external potential was appreciably negative (i.e. repulsive 
for electrons). In the KS scheme the density is constrained to be positive, since it is expressed 
as the square modulus of the wavefunction; in our calculations this is not so and the system 
tends towards an unphysical minimum with negative electron densities. Similar behaviour 
has been noted using the TF functional with strong external potentials [23]. 

Our prescription for the external energy is driven by the objective described in section 1: 
to take all aspects of the density functional, except EKE. from work based upon the Kohn- 
Sham representation and thereby confer ‘ab inifio’ respectability and transferability on our 
calculations. The negative density problem must therefore be viewed as a shortcoming of 
Em. With a functional that is quadratic in the density fluctuations, the force that resists the 
passage into the negative density region does not increase sufficiently rapidly as the density 
becomes very small. 

These findings appear to throw up a paradox: the motivation we presented for 
incorporating correct linear response in our functional was the fact that successful effective 
interionic potentials for metals (including sodium) are constructed by calculating the 
screening by the induced charge density on the basis of the linear response of the electron 
gas to the electron-ion interaction. We now find that the actual response of the valence 
electrons is much too strong to be described by linear response theory! The resolution 
of this ‘paradox’ lies in the character of the pseudopotentials used. We used an ub inifio 
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potential, which can be taken to represent the true strength of the interaction between the ion 
cores and the valence electrons, whereas in the construction of effective interion potentials 
empirical pseudopotentials are used and parameters in them are determined by requiring 
that the properties of the bulk ionic system agree with experiment. In this procedure it 
is assumed that linear response is adequate, and the consequences of this assumption are 
bound into the values of the fitted parameters. In practice, this means that the effective 
interion potentials are not transferable. 

2.3. The ‘Perrot’ functional 

An important improvement in the properties of the functional described above can be 
obtained by combining it with the von WeizGcker functional [35]: 

(2.19) 

(In fact, in von Weirsiicker’s original argument, E&] does not appear, and consequently 
his functional does not give the correct energy for a uniform system; we will refer to (2.19) 
as the von Weirsticker functional for convenience.) The functional derivative of EVw is 

By adopting E.,w[p] as the kinetic energy functional in (2.4) we can follow the procedure 
outlined above for the Thomas-Fermi functional and exhact the effective linear response 
function for the Hartree gas. This was first presented by Jones and Young 1361: 

X”W(R) = -”(-) 1 
JT2 1 +3qz 

where 9 = g/2k~. It behaves asymptotically as 

(2.22) 

The true linear response, however, is given by the Lindhard function !2.9), which behaves 
asymptotically as 

(2.23) 

A comparison of xvw and xo shows that xVw gives the correct linear response in the limit 
of large 9. (The correct low-q behaviour would be obtained if the integral in (2.19) were 
multiplied by a factor of 1 / 9  this gives the noma1 gradient correction to TF [4].) In fact, 
it is believed that, in the limit of large q. the von WeizsLker functional is exact not only 
in the linear response dgime, but for all perturbations 161. (Although no general proof has 
been provided for this, it has been proven to be the case for a number of special situations 
e.g. under the locally linear potential approximation, for a single particle, in the r + 0 and 
r + 00 limits for atoms 161.) 
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Perrot [18] has suggested that a kinetic energy functional that combines the attractive 
properties of the von Weizsacker and Hohenberg-Kohn functionals can be constructed by 
building the correct linear response into the von WeizsZcker form, i.e. 

EPIPI = Evwbl- Etinbl t EHKIPI (2.24) 

where Eli. is the linearized form of E,, and EHK is the Hohenberg-Kohn linear response 
functional, i.e. 

The Perrut functional thus has the properties that it gives the correct linear response for all q 
(since for small perturbations E,w = Elin) and that it is believed to be asymptotically exact 
in the limit of large q (since as q + w. Eli, -+ EHK)  for perturbations of all sizes. It is this 
latter attribute that should serve to prevent the 'negative density' problem encountered with 
EHK alone. The von Weizsacker functional can be derived on an essentially one-electron 
picture-by considering the 'Schrijdinger equation' for the square root of the density. As 
such it contains no account of Fermi statistics; Em, on the other hand, has the correct 
statistics built in (for the uniform system and at the level important for linear responsebas 
we emphasized, these have important consequences for metallic behaviour. We can hope 
that the combination contains sufficient ingredients to give realistic interionic interactions 
in metals. 

We note that a different functional with these same properties has recently been proposed 
by Wang and Teter [ 191. Wang and Teter also described ways of constructing a functional 
that is correct to third order in the density fluctuations. We have conducted a numerical 
study, of the type described below, of the properties of the Perrot and Wang-Teter second- 
order functionals and found very little to choose between them. As we will see below. these 
second-order functionals are already sufficiently close to reality to permit the properties of 
simple metals to be modelled accurately. 

3. Results for solid sodium 

In this section we describe results obtained for solid sodium using the Penot kinetic energy 
functional, the ToppHopfield pseudopotential and the Ceperley-Alder exchange-correlation 
term. In all calculations a plane-wave cutoff of 9.8Ryd was used. 

3.1. The ECC lattice parameter and bulk modulus 

Calculations were performed on a 54-atom cell (i.e. a 3 x 3 x 3 array of two-atom 
body-centred cubic unit cells). Starting from a random electronic configuration, an energy 
minimization was performed for the sodium BCC lattice at the experimental lattice parameter 
a = 7.984 au. Having obtained the ground state for the experimental geometry, the energy 
of the sodium lattice was then minimized with respect to the BCC cell parameter a .  The 
results are shown in figure 2. The minimum energy is achieved with a = 8.141 au (2.0% 
higher than the experimental value of 7.984au). 

The Perrot result was compared with that from a KS calculation on the same 54-atom cell, 
again with a 9.8Ryd energy cutoff. Only the r point was included in the sampling scheme. 
This calculation gives a lattice parameter of 8.06au (1.0% higher than the experimental 
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% I 
k..,J Fbre  2. The variation of the total energy with lattice 

value). The absolute values for the total energy differ considerably between the Permt and 
KS calculations. This discrepancy can be traced to the fact that a finitesize. r-point Kohn- 
Sham calculation does not give the correct energy for a uniform electron gas (whereas the 
Perrot functional is correct by construction). When the Kohn-Sham energy is adjusted by 
subtmcting the difference between the free-electron gas energy obtained from a 54electron 
r-point Kohn-Sham calculation and the exact value (0. J45 h m ) ,  the agreement between 
the Perrot and Kohn-Sham energies is correct to within 0.003 h a m s .  It is the shifted 
Kohn-Sham curve that is shown in figure 2. 

From this data we may also extract a value for the bulk modulus of sodium. We obtain 
6.5 x 10'0dynecm-2, using the Perrot functional, against an experimental value [26] of 
6.4 x 10'odynecm-2, an error of less than 2%. 

3.2. Vacancy formation energy 

A calculation of the energy to form a vacancy is a non-trivial test of the reliability of the 
model of effective interactions in a material. Pair potentials necessarily lead to the prediction 
that the vacancy formation energy is equal to the heat of sublimation per atom; these two 
quantities normally correlate poorly [26]. 

We have obtained the vacancy formation energy from the total energies of 54- and 53- 
atom systems (Ec  and E,, respectively) with a simulation cell length of 23.952au. which 
gives the experimental density at T = 0. The ions were allowed to relax in the 53-atom 
calculation, the relaxation energy was 0.1 eV. The formation energy Er is obtained from 

Er(T = 0) = E, - (53/54)Ec = 0.3eV (3.1) 

which should be compared with an experimental value of N 0.4eV [37.38]. A KS calculation 
on the same system using only the r point in the sampling scheme and without allowing for 
ionic relaxation has also been performed [34]. This gives a value of 0.7eV. substantially 
worse than the value obtained using the P m t  functional. presumably because of poor 
sampling. 

We have also estimated the activation energy for vacancy migration by calculating the 
energy of the split vacancy (including ionic relaxation), as above, and subtracting from it the 
vacancy formation energy. This gives a value of 0.03eV compared with an experimental 
upper bound of 0.1 eV obtained from self-diffusion data [39,40]. 
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3.3. Sodium lattice dynamics 

We carried out a set of molecular dynamics runs on the sodium lattice at a temperature of 
25 K in order to establish the phonon dispersion curves predicted by the Perrot functional. 
The lattice parameter was set at the experimental value of 7.984au. The initial ionic 
velocities were drawn randomly from a Maxwell-Boltzmann distribution at T = 50K. A 
leapfrog Verlet algorithm [41] was used for both the ionic and coefficient equations. The 
coefficient velocities were initialized by performing a backstep from the initial configuration 
11 51. 

Short test runs were carried out to establish optimum values for the timestep and 'fake 
mass' parameters pLB. In the work described in this section, pg took the g-independent 
value p. As we will discuss in more detail below, the criterion for choosing these values is 
that the dynamics should be 'adiabatic', i.e. that the system should remain in the electronic 
ground state during the dynamics mn. This is achieved by choosing a small value for p. 
On the other hand, a very small value for p necessitates a small value for at ,  in order 
that the rapid oscillations associated with the electronic system (whose frequency scales 
as p-"*) are followed by the integration procedure. We settled on values of St = 4Oatu 
(= 9.7 x 10-l6s) and f l  = 1.4 x 106au (note that the term 'fake mass' is somewhat 
misleading; with the electronic equations written as in (1.7). f l  has dimensions of energy x 
volume x time2). 

Having optimized p and St,  relatively long cP runs were carried out in order to obtain 
the phonon dispersion curves for sodium. The runs were Zoo0 steps in length, giving a total 
simulation time of 80000atu (about 2ps). 

The variation of the components of the total energy during a 54-atom mn are shown in 
figure 3. The CP algorithm is seen to be stable right up to the end of the run. The start-up 
is good (there are no high-frequency oscillations in the fake kinetic energy) and the total 
energy is conserved to a high degree of accuracy. At the start of the run, the ion temperature 
drops from 50K to about 25K. as the energy in the ionic vibrations (initially all kinetic) 
becomes partitioned equally between kinetic and potential. There is no apparent energy 
exchange between the electronic and ionic degrees of freedom during the run. The drift off 
the Bom-Oppenheimer surface is 0.59 x IO-'hartrees (for the 128-atom calculation it is 
0.838 x IOw6 hartrees). 

In order to calculate the phonon dispersion curves we calculate the longitudinal and 
transverse current correlation functions 

and 

where the angled brackets denote the average over time origins to. Current correlation 
functions were obtained for the [1,0,0], [1,1.0] and [1,1.11 directions, with averaging over 
equivalent k vectors performed to improve accuracy (e.g. [I,O,O], [O,l,Ol and [O,O,l] are 
equivalent). 
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Figure 3. Various energies against time in the COUM of an m simulation on a 54-atom system 
of sodium: the total energy, the total energy of the ionic system (the sum of the potential and 
ionic kinetic energies). the ionic kinetic energy and the 'fake kinetic energy' are shown. Note 
the differences in energy scales. 

Due to the periodic boundary conditions, only phonons with certain wavelengths may 
be examined in these simulations. Specifically, if the simulation cell contains p unit cells 
in each direction then only phonons with polarization vectors of the form 

I ,  m, n integers (3.4) 

may be observed, where Q is the cell parameter and L the length of the simulation cell. We 
thus obtain a discrete set of points on the phonon dispersion curve; in order to sample the 
curves reasonably well, we did calculations on 54- ( p  = 3) and 128- ( p  = 4) atom systems. 

Sample current correlation functions an shown in figure 4. The Fourier transforms have 
been obtained after windowing the correlation functions using the Blackman window [41] 

W ( t )  = 0.42 t 0.5 COS - + 0.08 COS - (3 (3 (3.5) 

The windowing function, while removing side lobes caused by the truncation of the 
correlation functions at t = I,,,, produces broadening of the peaks in the Fourier spectra. 
The phonon frequencies are thus taken as the frequencies at the peak maxima. 
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Fire 4. Time correlation functions and the associated specIra for full sodium. (0) and (c): the 
longitudinal (k ,  0,O) (k = 1,2,3) phonons in a %-atom simulation: (b) and id): the longitudinal 
(k, 0,O) (k = 1-4) phonons in a 128-mm simulation. 

The phonon dispersion curves from our simulations are compared with those obtained 
from neutron diffraction experiments 142,431 in figure 5. The errors in the experimental 
data points range between lcm-' and 3cm-I [42.43]. The agreement between the 
simulation results and experiment is generally within this experimental error. The only 
large discrepancy is for the transverse [q.  q. 01 phonons (and then this is only for the points 
given by the 128-atom calculation). One would expect these phonons to be the most diflicult 
to predict as (i) they are of low frequency-mly about one and a half cycles are completed 
within the simulation time, and (ii) the transveme [q. q, 01 modes are not degenerate and 
so there are two (partially overlapping) peaks in the associated current correlation function 
spectra. With a longer simulation these frequencies would probably be obtained to the same 
accuracy as those of the other phonons. 

3.4. liming and scaling properlies 

The 54-atom dynamics run was found to take 1.7s per step on a Convex C2, allowing the 
whole 80000atu simulation to be performed in under one hour. The 128-atom calculation 
took 5.7 s per step. A CP step is seen to take 3.3 times BE long for the 128-atom calculation 
as for the 54-atom calculation. If, as was hoped, the time scaled linearly with the system 
size then this figure would be 2.4; the scaling is therefore w o w  than linear. Looking at 
the timings for each routine in the program, one finds that everything scales linearly with 
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Fwre 5. The phonon dhpersion curve for sodium 'Ihe pluses (+) and aosses (3 show the 
phonon frequencies (longitudinal and h n s v m e ,  respectively) calculated in lhis work fmn lhe 
54- and 128-mm mns. The full and do& cwes  are stlaight-line segments connecting lhe 
experimental dala pints 142,431. 

the system size, except for the calculation of the ionic structure factor (required for the 
electron-ion interaction and the forces on the ions). This scales as the number of ions times 
the number of basis functions, i.e. as the square of the system size. For 54-atoms, the 
calculation of the structure factor takes 0.6 s per step, whereas for 128 atoms it takes 2.8 s 
per s t e p i t  is beginning to dominate the entire calculation. It would seem, therefore, that 
for large systems we will get quadratic, as opposed to linear, scaling. This is, however, 
still an immense improvement on the scaling properties of the Kohn-Sham calculation. In 
electronic energy minimizations, or in calculations in which only a small number of ions 
are moved, the algorithm scales linearly. 

3.5. Summary 

This survey shows that the results obtained for solid sodium with the Perrot functional are 
excellent; in fact, they are better than those obtained from the Kohn-Sham calculation on 
the 54-atom system with only r point sampling (equivalent to sampling at three sets of k 
points on the primitive BCC cell [IS]). The exmordinary aspect of the calculations is their 
low computational cost. 

4. Stability analysis and conditioning the algorithm 

The important property of the CP dynamics algorithm is that, under favourable circumstances, 
the electronic state is automatically updated on the ground-state surface as the ions move. 
The ion motion and the associated motion of the electmnic state (the 'fake motion') are 
described by the coupled classical equations (1.7) and (1.8). The ions move with an average 
kinetic energy (temperature) determined by the thermodynamic state of the system being 
simulated, whereas under favourable circumstances, the temperature of the electronic degrees 
of freedom is much lower since the only motion is that required by adiabaticity. This implies, 
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where F ( g )  is the extemal susceptibility of the system of interesr The frequencies of the 
coefficient motions about the ground-state surface are therefore predicted to be 

COP& = vf=m&. (4.4) 

Note that, because Ffg) is never infinite, the electronic frequencies can always be adjusted, 
by a suitable choice of &, to avoid overlap between the electronic and ionic densities of 
states. 

We will now show that the predictions of this simple model are in good accord with 
the behaviour observed for sodium. 

4.2. Characteristic frequencies of the 'fake' motion 

We examined the characteristic frequencies associated with the coefficient motion by 
calculating the correlation function of the coefficient velocities: 

Here the angled brackets denote an average over time origins to. As the theory in the 
last section suggests that coefficients with g vectors of the same magnitude will oscillate 
about their ground-state values with the same frequency, averaging was also performed 
over coefficients with such equivalent g vectors. In order to obtain the frequencies, the 
correlation functions were Fourier transformed to give their associated spectra C&, 0). 

The correlation function spectra generally consist of one main peak with a frequency 
above 1000cm-'. A typical example, for g = (2n/L)J5 = 0.587, is shown in figure 6(a). 
No correlation function gives any structure above 5000cm-'. Below 1000cm" the peaks 
associated with the adiabatic motion of the coefficients at the characteristic frequencies of 
the ion motion occu~, from the phonon dispersion curve of figure 5, we know that the ionic 
frequencies are in the range 0-140cn-'. The adiabatic peaks due to the ionic motion are 
much larger than those due to the non-adiabatic motion associated with departures from the 
ground state, since the ionic motion has a much larger amplitude (and the height of a peak is 
proportional to the square of the amplitude of the associated oscillation). The tails of these 
adiabatic peaks are seen in the spectrum shown in figure 6(a). As explained previously, the 
CP algorithm will break down if there is overlap in the frequencies of the ionic motion and 
the motion about the ground state. Thus the vely region in which we are most interested 
in looking for non-adiabatic density oscillation frequencies op, is the region in which the 
associated peaks are swamped by the adiabatic spectrum. 

The answer to this problem is to remove the adiabatic structure from the spectra by 
performing a CP run with fixed ions. This was done by starting a CP run using the ionic 
positions and coefficients from the end of a previous dynamics run. The ionic and coefficient 
velocities were both initially set to zero, and the ions were subsequently held ked .  As the 
coefficients at the end of a run will differ slightly from their ground-state values, when a CP 
run is started from this point the coefficients begin to oscillate about the ground state for the 
fixed nuclear configuration. The spectrum of the coefficient velocity correlation function 
for g = (2n/L)J5 = 0.587 from a 20000atu fixed-ion CP run are shown in figure 6(b). 
The peak frequency associated with the non-adiabatic density oscillation occurs at the same 
frequency as in the moving-ion run; this was true for all pg. There is no structure below 
1000cm-' in any of the spectra from the fixed-ion run, as was expected, confirming that 
all the coefficient frequencies are higher than this value and well out of the range of the 
characteristic frequencies of the ionic motion. 
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Figure 6. The specua of the coefficient velocity correlation functions for the g = 0.587au-' 
wavevector calculated @) in moving-ion and (b) in static-ion simulations. 'RE low-hequency 
part of the moving-ion specmm is dominated by the adiabatic coefficient motion. 

Coefficient oscillation frequencies identified in a fixed-ion nm (on a small cell) are shown 
in figure 7. Also shown in the figure are the theoretical coefficient oscillation frequencies 
predicted from (4.4) using an approximation to the extemal susceptibility of the system of 
interest, namely the extemal susceptibility of a Harbee gas with the same electron density 
as sodium (i.e. the RPA curve of figure 1). We see that, even with this further simplification, 
the predicted frequencies agree remarkably well with those observed. 
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E 2 4000 

3 
Figure I .  A comparison of the observed 
non-adiabatic coefficient oscillalion hequen- 
cis (crosses, x) with the values predicted 
f" equation (43) (full curve). The com- 
sponding frequencies observed after condi- 
tioning are also shown (full squares). The 
data were obtained in calculations on a two- 
atom cell. 

49. Conditioning 

The finding that the oscillation frequencies are predictable, as outlined above, opens up the 
possibility of improving the efficiencies of the dynamics algorithm and the procedure used 
to minimize the electronic energy with respect to the electronic variables. The upper limit 
on the timestep 6t in any dynamics algorithm is set by the requirement that the integration 
procedure be able to follow the fastest oscillations in the system. Usually, with a Verlet-type 
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algorithm, the period of the fastest oscillation should be at least ten times longer than S t .  
The period of the fastest coefficient oscillation in our system is about 1.3 x s, so that 
our empirical finding of good energy conservation with 61 N s is consistent with this 
rule of thumb. 

However, if we choose the ‘fake masses’, pLe. such that 

all the coefficient frequencies become equal: 

WP* = J - l / c  

(4.6) 

(4.7) 

and by choosing c so as to minimize the coefficient frequencies, subject to the requirement 
that they remain comfortably outside the range of characteristic ion frequencies, we can 
maximize the timestep to a value determined by the frequencies of ionic motion. Note that, 
since F ( g )  cx g-=,g -+ 0, the benefits of ‘conditioning’ the algorithm in this way will 
increase with system size, since the minimum value of g is inversely propoltional to the 
cell length. 

The same idea can be used to improve the efficiency of the electronic optimization step, 
required to find the ground state at the start of a run. A simple steepest-descent algorithm 
for this process is: 

when written in terms of a ‘time’ that measures progress along the minimizing path. It 
is  well known that this algorithm becomes painfully inefficient whenever the energy as 
a function of the (pg)  has the shape of a long and narrow valley [45]. In the present 
context, this is equivalent to saying that the electronic frequencies span a wide range. By 
choosing the ( f ig )  as in (4.6) we can greatly accelerate the convergence of the steepest 
descent procedure. 

In practice, we approximated F ( g )  by the value appropriate to the Hartree gas. In the 
test calculations illustrated in figure 7. we chose c so that the electronic frequencies were 
in the vicinity of 4500 cm-I. The range of electronic frequencies was narrowed, in the way 
predicted, so that all electronic frequencies were within 400cm-’ of the target value. With 
the electronic frequencies conditioned in this way we performed runs on a 54-atom system 
and obtained energy conservation better than lO-’hartrees and no significant transfer of 
energy between the ionic and fake systems over a run of 2000 steps with a timestep of 
IOOatu (2.5 x IO-l5)s. This is only a factor of about four shorter than the timestep that 
would be required in a classical MD mn on this system. Similarly, conditioning the steepest 
descent algorithm increased the rate of convergence to the electronic ground state by a factor 
of two. 

5. Conclusion 

The purpose of this paper was to demonstrate the possibilities for ab initio hm simulation 
with an orbital-free density functional. Firstly, we have shown that explicit and simple forms 
for EKE, which depend only on the density and which are adequate for simple metals, can 
be found We have demonstrated that excellent results are obtained for solid sodium and 
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preliminary results show that results of similar quality are obtained for other simple metals 
in both the solid and liquid state; these results will be discussed in a future publication. The 
scope of the orbital-free density functionals is not yet established. We have already found 
that reasonable results are obtained for a semiconductor (Ge) with the simple second-order 
functional, in the sense that the diamond SttucNre is (at least) locally stable and that the 
electron density shows maxima along the bond directions, suggestive of covalent bonding. 
However, it is likely that, to represent such systems accurately, a better functional will be 
required: the third-order functional discussed by Wang and Teter [I91 is one possibility. 
Secondly, the low cost of evaluating the functional and the good scaling properties of the 
algorithm suggest that a considerably more complex improved functional (perhaps along 
the lines indicated by Wang and Teter [ 191) could be used and still be much more efficient 
than KS for large systems. Thirdly, we have shown that the CP algorithm is extremely 
well behaved when using a functional of this type. We have analysed this property in 
detail and shown that the algorithm can be optimized to greatly improve its performance 
in both energy minimization and dynamics. With this optimized algorithm, calculations on 
large systems, containing over a thousand atoms, become viable. More complex orbital-free 
functionals present no difficulty in principle for the ab initio MD algorithm and should share 
the advantages we have detailed for the simple second-order functional. 

Clearly, abandoning the wavefunction will ultimately limit the applicability of the 
method. The most obvious limitation is that there is no way of including the 'non-locality' 
of the pseudopotential in these calculations. At present, most pseudopotentials used in 
accurate KS calculations are non-local. Non-locality is believed to be essential to represent 
the interactions between electrons in a valence subshell with a core that contains no electrons 
with the same azimuthal quantum number [a]. However, non-local potentials are also used 
in other cases because softer potentials (which require a smaller plane-wave cutoff for 
convergence) may be constructed in this way by using larger values for the core radii. We 
should still be able to make progress with these elements with local potentials, the large basis 
set required with a local function should not present a major problem, given the efficiency 
of the electronic algorithm. If very small core radii are needed, non-linear core corrections 
can be made within our framework [46]. 

- 
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